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COMBINATION OF TWO OPTIMIZATION TECHNIQUES

HOU-AN, CHEN
NATIONAL CHENG KUNG UNIVERSITY, TAIWAN

For global optimization, an algorithm based on electromagnetism theory in physics (EM
method) has been proposed, using an attraction-repulsion mechanism to move the sample points
towards the optimality. Another method for optimization, called neuroevolution (evolving neural
network), is developed. It utilizes a learning mechanism and is based on the neural network,
which is motivated by biological structure of neurons.
In this talk, I will first introduce two methods above. Then I will propose a combination of EM
method and evolving neural network, or give some plans on combining two.
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ON OPTIMALITY CONDITIONS IN CONVEX OPTIMIZATION

WITH LOCALLY LIPSCHITZ CONSTRAINS

ZHE HONG*, NAK EUN CHO, DO SANG KIM
PUKYONG NATIONAL UNIVERSITY, KOREA

In this talk, we consider a convex optimization problem with locally Lipschitz inequality
constraints. The KKT optimality conditions for quasi ϵ-solutions are established under Slater’s
constraint qualification and a non-degeneracy condition. Moreover, we explore the optimality
condition for weakly efficient solutions in multiobjective convex optimization involving locally
Lipschitz constraints.
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DEFINING EQUATIONS OF RATIONAL CURVES IN

SMOOTH QUADRIC SURFACE

WANSEOK LEE, SHUAILING YANG*
PUKYONG NATIONAL UNIVERSITY, KOREA

For a nondegenerated irreducible projective variety, it is a classical but very difficult problem
to study the defining equations of a variety with respect to the given embedding. In general,
the varieties of which defining equations are completely known are very rare. Let C ⊂ P3 be
a rational curve of degeree d ≥ 3 which is defined to be an image of the map νd : P1 −→ P3

parameterized by

Cd = {[sd(P ) : sd−1t(P ) : std−1(P ) : td(P )] | P ∈ P1}.
In this talk, we precisely determine the defining equations of rational curves C ⊂ P3 for all

d ≥ 3
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NEURAL NETWORKS BASED ON THREE CLASSES OF NCP-FUNCTIONS

FOR SOLVING NONLINEAR COMPLEMENTARITY PROBLEMS

JAN HAROLD ALCANTARA*, JEIN-SHAN CHEN
NATIONAL TAIWAN NORMAL UNIVERSITY, TAIWAN

We consider a family of neural networks for solving nonlinear complementarity problems
(NCP). The neural networks are based from the merit functions induced by three classes of
NCP-functions: the generalized natural residual function and its two symmetrizations. We first
provide a characterization of the stationary points of the induced merit functions. To prove the
boundedness of the level sets of the merit functions, we prove some important properties related
to the growth behavior of the complementarity functions. Furthermore, we analyze the stability
of the steepest descent-based neural network model for NCP. To illustrate the theoretical results,
we provide numerical simulations using our neural network and compare it with other similar
neural networks in the literature which are based on other well-known NCP-functions. The nu-
merical results suggest that the neural network has a better performance when their common
parameter p is smaller. We also found that one among the three families of neural networks we
considered is capable of outperforming other existing neural networks.
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A GAUGE-INVARIANT HIGH-ORDER MIXED FEM SCHEME

FOR TDGL EQUATIONS ON 2D NON-CONVEX DOMAINS

YU-HSUAN KUAN*, WEI-CHENG WANG
NATIONAL TSING HUA UNIVERSITY, TAIWAN

The microscopic description of the vortex state for the type-II superconductors can be described
by the time-dependent Ginzburg-Landau (TDGL) equations, which are given by
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with the boundary and initial conditions(
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)
Ψ · n = 0, ∇×A = H, on ∂Ω× [0, T ],

Ψ(x, 0) = Ψ0(x), A(x, 0) = A0(x), on Ω,

where Ω ⊂ R2 is the region occupied by the superconducting sample and n is the unit outer
normal vector on the boundary ∂Ω. The variable functions Ψ is the complex scalar-valued order
parameter, A is the real vector-valued magnetic potential, and Φ is the real scalar-valued electric
potential. Physically, |Ψ| = 0 and |Ψ| = 1 correspond to the normal state and the superconducting
state respectively, while 0 < |Ψ| < 1 represents a mixed (vortex) state. The real vector-valued
function H is the applied magnetic filed, κ is the Ginzburg-Landau parameter, and η is the
normalized conductivity (usually set as 1 for simplicity).

In this talk, I will sketch the background of TDGL equations and introduce the equations
in detail, especially the gauge-invariant property. Then I will survey some numerical methods
published in the past two decades and give the motivation of the high-order mixed finite element
method (FEM) on non-convex domains mentioned in the title. Finally, I will discuss my current
progress and the ongoing work.
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LOCAL STABILITY AND LOCAL CONVERGENCE OF THE BASIC

TRUST-REGION METHOD

BUI NGOC MUOI
NATIONAL SUN YAT-SEN UNIVERSITY, TAIWAN

It is about the Basic Trust-Region Method for solving the nonlinear optimization problems.
We proved that the iterative sequence constructed by this algorithm, which uses the Cauchy
point method, is locally stable and linearly convergent in a neighborhood of a nonsingular local
minimizer.
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THE THEORY OF FALLING SHADOWS APPLIED TO B-ALGEBRA

ALJEAN FAYE R. PONDARA*, JOCELYN P. VILELA, PH.D.
MSU-ILIGAN INSTITUTE OF TECHNOLOGY, PHILIPPINES

J. Neggers and H. S. Kim introduced the notion of B-algebra in 2002 [5]. B-algebra is related to
several classes of algebras of current interests such as BCH/BCI/BCK-algebras and is described
as follows: A B-algebra is a nonempty set X with a constant 0 and a binary operation “∗”
satisfying the following axioms: (B1) x ∗ x = 0; (B2) x ∗ 0 = x; (B3) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)),
for all x, y, z ∈ X.

In this paper, the notion of falling fuzzy ideal of B-algebras which is based on the theory
of falling shadows ([1, 6]) is introduced. Several properties about falling fuzzy ideal are also
investigated and established. Consequently, the concept of t-norm T ([2, 3, 4]) is applied to
fuzzy ideal structure of B-algebras from which the T -fuzzy ideal of B-algebras is proposed. Some
characterizations of T -fuzzy ideals are also presented and conditions for a falling fuzzy ideal to
be a T -fuzzy ideal are provided.
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ON A GRAPH INDUCED BY A HYPER BCI-ALGEBRA

MICHELLE T. PANGANDUYON*, SERGIO R. CANOY JR, PH.D.
MSU-ILIGAN INSTITUTE OF TECHNOLOGY, PHILIPPINES

The study of BCI-algebra was initiated by K. Iséki in 1966 [1]. Various studies has been de-
veloped to establish some of its properties and further investigations yield to elevate its structure
into its hyperstructure. Let H be a nonempty set and ⊛ a function from H×H to P ∗(H), where
P ∗(H) denotes the power set of H \{∅}. Then we call (H,⊛) a hyper groupoid and ⊛ a hyperop-
eration. By a hyper BCI-algebra H, we mean a hyper groupoid (H,⊛) that contains a constant
0 and satisfies the following axioms: ((x⊛ z)⊛ (y⊛ z)) ≪ x⊛ y; (x⊛ y)⊛ z = (x⊛ z)⊛ y; x ≪ x;
x ≪ y and y ≪ x implies x = y; and 0 ⊛ (0 ⊛ x) ≪ x, x ̸= 0, for all x, y, z ∈ H. The concept
of a hyper BCI-algebra which is a generalization of a BCI-algebra was introduced by X.L. Xin
[2]. Since then, various properties of this algebraic hyperstructure have been studied by several
authors. This paper introduces the notion of the zero divisor graph of a hyper BCI-algebra and
investigates some of its properties.
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APPROACH TO THE SOLUTION EXISTENCE PROOF FOR

NAVIER–STOKES EQUATION BY USING VERIFIED COMPUTING

XUEFENG LIU
NIIGATA UNIVERSITY, JAPAN, JAPAN

As one of the Millennium Prize Problems, the problem of existence and smoothness of the
Navier–Stokes equation problem draws attention of mathematicians from the world. To solve
the this problem, a breakthrough with new mathematical theory and new computing technique
is expected. On one hand, the computer-assisted proof utilizing verified computing, which aims
to give rigorous estimation for all error appearing in numerical computations, provides a new
approach to the solution existence proof to the Navier–Stokes equation. In this talk, I will explain
the basic idea of verified computing and show the latest progress in this field, which includes
recent research on rigorous error estimation for finite element method solution to Navier-Stokes
equations.
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RELATIONSHIPS BETWEEN CONSTRAINED AND UNCONSTRAINED

MULTI-OBJECTIVE OPTIMIZATION AND APPLICATION IN LOCATION

THEORY

CHRISTIANE TAMMER
MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG, GERMANY

(JOINT WORK WITH CHRISTIAN GÜNTHER)

The main purpose of the lecture is to investigate relationships between constrained and uncon-
strained multi-objective optimization problems. We mainly focus on generalized convex multi-
objective optimization problems, i.e., the objective function is a componentwise generalized con-
vex (e.g., quasi-convex, semi-strictly quasi-convex or explicitly quasi-convex) function and the
feasible domain is a convex set. However, it is important to note that we derive several results for
general objective functions without generalized convexity assumptions on the objective function.
Beside the field of location theory the assumptions of generalized convexity are found in several
branches of Economics, e.g., in the field of utility theory.

In the lecture, we formulate the basic constrained multi-objective optimization problem and
the corresponding extended unconstrained one, we introduce solution concepts and recall results
about generalized convex and semi-continuous functions. Moreover, we introduce gauge func-
tions and we prove some important facts about gauges. These results will be used for deriving
characterizations of the sets of solutions of constrained multi-objective optimization problems.

Under suitable assumptions (e.g., generalized convexity assumptions) we derive a charac-
terization of the set of (strictly, weakly) efficient solutions of a constrained multi-objective opti-
mization problem using characterizations of the set of (strictly, weakly) efficient points of uncon-
strained multi-objective optimization problems. Furthermore, we present a theorem that provides
lower and upper bounds for the sets of (strictly, weakly) efficient solutions for multi-objective
optimization problems involving nonconvex constraints.

We apply our results to constrained point-objective location problems involving mixed gauges
defined by  η1(x− a1)

. . .
ηm(x− am)

 → min
x∈X

,

where η1, . . . , ηm : Rn → R represent special distance functions (gauges) and a1, . . . , am are
finitely many given points in Rn. We present several examples in order to illustrate that the
sets of (strictly, weakly) efficient solutions can be completely generated for convex constrained
point-objective location problems using known algorithms for the unconstrained case taking into
account our results.

Finally, we demonstrate the MATLAB-based software tool

Facility Location Optimizer (FLO)

that can be used for solving special types of single- as well as multi-objective location problems
involving different distances measures. For more information, see http://www.project-flo.de.
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ON APPROXIMATE SOLUTIONS FOR

ROBUST CONVEX OPTIMIZATION PROBLEMS

GUE MYUNG LEE
PUKYONG NATIONAL UNIVERSITY, KOREA

Mathematical optimization problems in the face of data uncertainty have been treated by
the worst case approach or the stochastic approach. The worst case approach for optimization
problems, which has emerged as a powerful deterministic approach for studying optimization
problems with data uncertainty, associates an uncertain optimization problem with its robust
counterpart.

Many researchers have investigated optimality and duality theories for linear or convex pro-
gramming problems under uncertainty with the worst-case approach(the robust approach). More-
over, many authors have studied optimality and duality theorems for robust multiobjective opti-
mization problems under different suitable constraint qualifications.

In this talk, we explain robust optimization problems with an illustrating example, and then
we review our recent results on optimality theorems and duality theorems for robust convex
optimization problems.

(1) In the first section, we explain “What is a robust optimization problem?”;
(2) In the second section, we consider approximate solutions(ϵ-solutions) for a robust con-

vex semidefinite optimization problem involving a convex objective function and linear matrix
constraint functions with data uncertainty. Using robust optimization approach(worst-case ap-
proach), an approximate optimality theorem and approximate duality theorems for the problem
are given;

(3) In the third section, we consider approximate solutions(ϵ-solutions for a robust convex
semi-infinite optimization problem involving a convex objective function and infinitely many
convex constraint functions with data uncertainty, and give its robust counterpart. Using robust
optimization approach (worst-case approach), approximate optimality theorem and approximate
duality theorems for the problem are given.

The second section is based upon the paper “On Approximate Solutions for Robust Convex
Semidefinite Optimization Problem” which was published in the Journal “Positivity” (2018) and
which was written by Jae Hyoung Lee and myself, and the third section is based upon the paper
“On ϵ-Solutionss for Robust Semi-infinite Optimization Problems” which will be published in the
Journal “Positivity” and which was written by Jae Hyoung Lee and myself.

(G.M.Lee) Department of Applied Mathematics, Pukyong National University, Busan, Korea
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AN INERTIAL FORWARD-BACKWARD SPLITTING ALGORITHM FOR

MONOTONE INCLUSIONS WITH APPLICATIONS

POOM KUMAM
KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), THAILAND

The purpose of this paper is to introduce a new iterative method that is the combination of the
modified Mann type forward-backward splitting, viscosity approximation method and alternating
resolvent method for finding the zero of sum of accretive operators in uniformly convex real
Banach spaces which are also uniformly smooth algorithm. Our result is new and complements
many recent and important results in this direction in the literature.

(P. Kumam) Department of Mathematics, King Mongkut’s University of Technology Thonburi
(KMUTT), Bangkok, Thailand

E-mail address: poom.kum@kmutt.ac.th

2000 Mathematics Subject Classification. Primary ; Secondary .
Key words and phrases. the sum of zero point; splitting algorithm; forward-backward algorithm; viscosity
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INCREMENTAL TYPE METHODS FOR ADDITIVE CONVEX

MINIMIZATION PROBLEMS

NARIN PETROT
NARESUAN UNIVERSITY, THAILAND

We will start by focusing on some important examples, from a variety of applications, which
arise in several important contexts: an objective function is the sum of a large number of com-
ponents,

(1) f(x) :=

m∑
i=1

fi(x),

where the functions fi are convex real-valued. The problem of type (1) is called additive cost
problem.

The additive cost problem can be minimized with specialized methods, called incremental,
which exploit their additive structure, by updating x using one component function fi at a
time. Subsequently, in this talk, we will discuss the ideas underlying incremental method and
its convergence properties. Finally, the interesting combinations of the incremental concept with
other methods, such as the proximal algorithm will be considered.
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STRONG DUALITY IN MINIMIZING A QUADRATIC FORM SUBJECT TO

TWO HOMOGENEOUS QUADRATIC INEQUALITIES OVER THE UNIT

SPHERE

RUEY-LIN SHEU
NATIONAL CHENG KUNG UNIVERSITY, TAIWAN

This problem, called (P), is a generalization of a simpler version (P’) which also minimizes a
quadratic form but has just one homogeneous quadratic constraint over the unit sphere. The
inclusion of an additional homogeneous quadratic constraint can cause (P) to have a positive
duality gap whereas the simpler version (P’) has been proved to adopt strong duality under
Slater’s condition. On the surface the underlined problem (P) appears to be different from the
CDT (Celis-Dennis-Tapia) problem. Their SDP relaxations, however, share a very similar format.
The minute observation turns out to be valuable in deriving a necessary and sufficient condition
for (P) to admit strong duality. We will see that, in the sense of strong duality results, problem
(P) can be also considered as a generalization of the CDT problem and even more, we can solve
(P) without assuming the Slater’s condition. Many nontrivial examples are to be shown in the
talk to help understand the mechanism.
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